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FOREWORD

The work covered by this report was done =z the System Dynamics Branch,
Acronautical Research Laboratory, under Pru.ect 7060, "Flight Dynamics
Research and Analysis Facility"., Mr. Paul W. Nosker is Project Engineer.
‘This study is part of a continuing program to L’ ermine optimum methods of
simulation 2nd analysis of the dynamics of ai= weapon systems. The general
subject of quaternions as applied to coordinats ronversions has been under

investigation for approximately two years, thxugh the bulk of the work reported
here was accomplished during the last six mamzns of 1957,

The author wishes to express his appreciation to Mr., Robert T. Harnett and
others of the Analog Computation Branch of this Aeronautical Research Laboratory
for assistance in the analog simnulation portiamm of the study,
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ABSTRACT

b

The thecry of the four -parameter method is developed with specific :
application to coordinate conversion in aircraft simulations. This method
is compared with the direction cosine method both in a theoretical ercor
analysis and in an example simulation on an analog computer, It is shown
that the quaternion metiod is no more sensitive to multiplier errors than
is the direction cosine method, and it raquires nearly 30 per cent less '
computing equipment. In addition, the multiplier bandpass reguirernent )
in the four-parameter method is only half as severe as for direction cosines.
By every important criterion, the quaternion method is no worse than, and
in most cases, better than the direction cosine method,
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SECTION I !
INTRODUCTION

The problem of motion of a rigid body and the associated one of coordinate .
copversion are very old ones in the field of classical dynamics, Significant
results, daring from the time of Euler (1776) thrcugh the introduction and
apolication of matrix methods by Cayley and Klein and others in the last half
of the nineteenth century, breought the matter to suchk 2 satisfactory state that
no significantly new inethods or approaches have been found necessary. The
develupmeant of modern computing machinery makes necessary a re-examination
of the varicus methods frem the standpoint of their utility in computational
devices. It is not necessarily true that methods which have proven their con-
venience in the largely anclytical manipulations of classical mechanics shouid

prove tc be best adapted for nuraerical or aialog computation. Quaternions fell

L —————

into disvse among physicists about the turn of the present centur: tecause matrix
and vector methods had proved more useful in the types of investigations then
boing conducted, The purpore of the present paper is to show that the quaternien
arproach to coordinate transformation does wffer 1eal advantages in the anaiog
simulation of rigid body motion. In recent times Deschamps and Sudduth* have
suggented an applicailion {or digital compatation, and Backus** has propesed them
{or analog cimulation, but in general quaternions are little known among those
engaged in simulation of aircraft motions, !
The coordinate conversion prnblem in aircraft and missile simulation is :
different at least in emphasis from that of classical dynamics. It might be well o
to state the problem which is of interest and to which the methods explained later
will be applied, A missile or aircraft mnay be considered as a moving coordinate !

system, Various vectors must be transformed into this coordinate sysiem or out

*Deschamps, 3. A, and W. B, Sudduth, Fed;;al Tclcco—xﬁrﬁ:mications i.aboratoriecs, '
Nutley, New Jersey, Case 26-10707, November 1955,

¥¥iackus, George, Rigid Body Equations - Euler Parameter s, Technicai Note 6,
Advisory Board on Simulation, University of Chicage, Novembear 1551,

Manus.ript released by author 15 January 1958 for publication as a WADC Technical
Report, ' , -
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of 1t inlo sume inertial system,

Integrating the cquations o motion of the air- '

frame can be made to yield the three components of the coordinate system's

angular velocity vector, From the X, Y and Z components (P, Q. R)of this

vector in the moving system, it is desired to keep track of the oricutation of

the coordinate system in such a way that vectors may be transiormed in either

direction. This means an integration of angular rate to detexinine angular

position,

Fundamental to this procedure is a consideration of how the orientation of

the coordinate system is to be specified, During the history of the subject,

varivus methods of doing this have bLeen put forward, All the most useful ones

fail into three categories: Euler angles, quaternions, and direction cosines. _ a
Of these, the first and last are probably the most fainiliar to mocern readers. ‘
In the Euler angle method, the orientation is expressed as the result of three

rotations about each of ti'ree axes, the rotaiions being made in a specific
sequence, The physical interpretation of a quatei1nion is a rotation through some
m .

angle about some specific fixed axis. The nine direction cosines are simply the

. ' i
cosines of the angles between each of the axes in the moving system with each

of the axes of the fixed system. Principal attention here will be given to the i

uaternion, or four-parameter system. It was first intraduced by Euler in 1776,
’ P Y )
esule uf spherical trigonometsry considelations,

A a
a2 A

-

The elegant quaternion

formulation was invented by Hamilton in 1843 as a new kind of algebraic inimal-
ism. A matrix formulation was devised by Klein for use in gyroscopic preblems
and, in this formulation, is usually known as the Cayley-Klein parametiers. FEach
<l these three different approaches to the four-paramater systemn has its own
advantages, It has been decided to present at least an outline of all three here, ‘
There are two reasons for this: first, there are sorne propositions which are mare

casily shown by ons development; second, it scems probable that when the reader

is offercd a Jhoice ol method, he will reach &n understanding sooner if he cou

sclect the method most neerly consonant with his own background,
It will become apparent that this subject presents something of an ¢xpositional )

problem. In order to rcach the desired ends, it has been deciued to asswume that

e e e AR baan e 4

the rcader has a knowledge of matrix mecthods, especially as applied te coordinate
conversion in three~dimensional space., As & compromise, 3 brief introduction

to the subject is given in Appendix A, though a more satisfactory treatiment iz

given by Goldstein®, In this 1c¢port the term "quaternion' has been used to

“Yutein, Herbert, Classical Mechanics, Addison-Wesley Press, Cambridge,
Mass,, 1950,

IO Lt
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represent the four-parameter method in general, In other cases, it is necessary
to usc the word to distinguish Humilton's develupment from the others. It is hoped
that confusion may be kept to a minimum,

There arc many different techn.ques used in present-day aircraft simulations to
solve the coordinate conversion problem, The technique is usually adapted to the
special requirements of the problem at hand. If most of the rotation takes place
zbout one axis, or if only the gravity vector is to be handled, or if the airframe's
rotation is otherwise restricted, valuable simplifica'tions may be effected in the
analog equipment required to represent the conversioa. It is not the present
purpose, however, to investigate all these possibilities, Consideration will be
given only to the most general and unrestricted case: that of several complete
revolutions about any c¢r all axes. This immediately excludes the Euler angles
becauss of the singular point. The advantages of Euler angles are such, and their
popularity is so pervasive, however, as to warrant keeping them in mind, Accordingly,
Appendix B gives a brief outliae of the Euler Angle system most commonly used in
aircraft work, angd at appropriate points, comparisons will be made of them with
quaternions and direction cosines. In making such comparisons, that form of Euler
angle instrumentation whuose capabilities most ncarly equal those of the quaternion
scheme will be assumed., This form has been discussed at some length by Howe*
and his figures and results will be used for comparison, in Howe's method, the
extent and direction of rotation is unresiricted except for the inevitable singular
orientation, and he shows that even this leads to less practical difficulties than one
might expect,

It is valuable to keap the Euler angles ir. mind, but the quaternion method must
really stond or fall on :its momparison with direction cosines. It has in common
with direction cosines the caj ability of handling completely unresiricted rotations,
Accordingly, considerable atteition has been devoied to the direction cosine method
in tkis report, Both a theoretical error analysis and a simulation program were done
for the cosines in order tc provide the most compleie possible basis of comparison,
They have heen dune before, buit it is difficult to compare results obtained by
diiferent investigators or diffe rent compu{ing cquipment.' An attempt was made here
to keep the corditions as nearly comparable as possible, Of all the material con-
tained hereir, no originality i1s claimed exrept for ihe quaternion error analysis
and simulation. Even here, no ne'w techniques were used, with the possible
excepiion of the method of handling multiplier ervors, It was felt nzcessary,
however, to include the remaining matarial in order to introduce and place in

context this probably unfamiliar subject.

— ———

*Howe, R, M, and E. G, Gilbeii, A New Resolving Method for Analog Computers,
WADC Technical Note 55-468, January 1956, ) !

WwWADC TR 58.17 3

ks s mm 3t camainin o

e Mt o dM o 1 2

s a2 Wkl a8

B Tk A A AT oAkl am




ettt 3 i 1 sr R I :-. G > c. - * Ky .
Lt 2P oD WA s TN L0 s 0 ™ . k& ittt S e bR ) e 7 £ Yl YR 2 Sk 1 amat e

Sda -'ui';‘w"-3 R
M‘-ﬁ'w.ww

i SECTION 1I
L

THE EULER PARAMETERS

The earliest formulation of the four-parameter system was given by Euler

1776, thuugh rhe oldest treatment generally available today is probably that
of Whittakar*, It is an essentially geometrical development, but will not be
presented s such here, The principal results may be demonsirated with much
less labor by use of matrices,

Central to the developiment of these parameters, and indeed to the {four-

parameter methods in general, is the proposition known as Euler's theorem,
which may be stated as follows: any real rotation may be expressed as &

i rotation through some angle, about some fixed axis. In other words, regavd-

less of what the rotation history of a body is, once it reaches som.e orientation,
that orientation moy be specified in terms of a rotation through some angle (‘vhich

can be determined) cbout soine fixed axis.

TR PV AT R

The truth of this proposition is net intuitively obvious, but in aay case, it must
be shown, Consider a transformation matrix (A). No restrictions are rut an (A)
cther than those which exist for all orthogonal transformation matrices (see
Appendix A), Another way of stating Euler's theorem is to say that for every
muatrix (A) there exists some vector R whose components are the same before !

and after application of (A); in other words, there must be rome R sach that

(AR = R iy 3

R e b d PEL L Al ol Rt o el S S

for any (A). If the components of R are desigrated X, Y and Z, the slemonte f

of {A) by 3, 5+ then Equation (1) may be written

) | 1

i DU PR
221 22 423 \Y =Y. (
/ yA \z

fal}

s a. a a
\ 3! 32 33,/

1f this matrix equation is expanded in components, a set of linear homogenous

¥Whittaker, E, T. Analytical Dynamics, Fourth Edition, Dover Public;t‘igr_.\!;:
N, Y,, 1944, :
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cquations results:

(a), - DX +a,Y + 2,2 =0,
\ - .
a, X +(ay, - )Y + a,,Z = 0, (3)
ag Xt oag,Y + (333 -1)Z = 0.

A necessary and sufficient condition for exastence of a ron-trivial solution is
that the determinant of coefficients be zero, Therefore, it is necessary to show
that

ap -1 212 a3
a1 2, -1 a3 = 0. (4} :
a3) a3 azy -1

This may easily be done ymaking use of the properties of an orthugonal trans-

fosmetion matrix developed in Appendix A, If the above cquation is expanded,

(a)12,,233%8) 58,3831 +8,183,3) 3-83)8) 3375-3,)3) 5233-33,3, 38, -1)

z - a - a 5= (5
Hag ) -ap,233%a,3a3,)4a,,-a) 2y 343y gag) ) Hagg-a ay,48,)25,)= 0 (5}

The first term vanishes in consequence of the fact that the determinans of the
transformation matrix must equal unity {(Equation {158) j, and thc last lhree termns
vanish from the orthogonality conditiorns of Egquation (162). Thus, itis proved
that Equation {4) ic an identity for any orthogonal (A) and that there exisie some '
vector R which is unchanged by the transformation, This proves Luler's theorem,
Since it has been shown that it is possible to express any rotation ag a singie
rotation about some axis, it is possible to make use of the equivalent rotation te
speciiy orientation. Consider two soordinate systems XY Z and X'Y'2'. The
XYZ system is assumed to be fixed in inertial space, and X'Y'Z' is maoving ir
some arbitrary manner, though both cocrdirate systems have the same origin,
Assume that initially the two systerns are coincident, Then the X'Y'Z' system

is rotatad through an angle p about an axis which makes angles a, f}, y with the

WADC TR 58-17 5
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N, Y, Zoaxes respectively. To will be noted that this axis of rotation makes the
% samge angles a, B, ¥y ~ith the X', Y', 2" axes also. It is now necessary to express
the transformation matrix in terms of the quantities p, a, % and vy,
It urder to Jdo this, use is made of an additional coordinate system, Xryrzr’

which 1s fixed 1n the XYZ systemn. The Xr axis lies along the axis of rotation,

and the Yr axis is restricted to the XY plane, This would give rise to difficulty

12 the 72 axis is the axis of rotation, but in that case, the Yr axis ¢ould be confined
tw the XZ pliane or the YZ plane, and the final result would be unaltered. At any
r.te, with the choice indicated, the Yr axis is always perpendicular te the Z axas.,
Now the rotation through the angle p is a rotation through o about the Xr axis, so
the rotation is a very simple one in the Xrerr system, Accordingly, the rot-fion
o! *he N'Y'Z' system th-ough the angle p may be vicwed 55 the result of three
rotations: (1) rotation of the X'Y'Z' system into coincidence with the errzr
systeny (2) rutation through the angle g abe ¢ the X, axis; (3) the reverse of

(1) to restore the original separatioa of the X'V'Z! and X ¥ 7 systems, The

> . R . .
\‘ imatrix for ¢acl of these transformations will be developed, and then the three

inay be multiplied together to express the total transformation,

£irsy, the transformation into the XrYrZr system wil] be considered., a, 8,
ard vy oare the anples hetween the new N_ axis and the fized X, ¥ and Z axes.
r
Thus, it is scen from Equation {125) that a1 22 and a;, are immediately fixed.
-

Cne other cosine may be established, Recall that the Y _ axis is perpendicular to

e Z exts, This means that 3,3 = 0. Thus the matrix of the first rotation is

porticzily estavlished,

cos a cos P cos Yy
(A) = aZl (‘122 0 . (6)
a, a a,
\ 231 32 53/

Applying the orthogonality conditions, it is possible tu deduce tl.at the other

clements are
o ¢os a cos P COs Yy

(A) = +cosf zscy * cos a CsC Y 0 . (7)
T cns a cot y TcospP coty = siny

The ambiguities ‘n sign mnay be resolved by making use of the requirement that

v roansteix ahove must reduce to the identity matrix when a beccmes zero,

WADC TR %3-17 b
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The result is : S e —

cos a cos . cos Y
(A) ={-cosP cscy cosa cscy 0O . ~(8)
-cos a .cot y -cos Bcoty siny '

The second rotation, through the angle u, about the Xr axis is simply

S 0

(R)y = 1 0 : cos p ’ ~ singp . . (9)

0 " .sinp  cOS R

The last of the three rotations is the inverse of {A) or (A)'l. Thus, the general
transformation is the result of all three, called (B). Itis given by '

(B) = (AV(RNA).  (10)

This is a similarity transformation, and, among other things, the spur (sum of
the diagonal elements) of a matnx is invariant \mdcr a. sxmxlanty transfcrmatwn, :
i.e.,. ' : T ‘

bzz

so the angle’'of rotation may be obtained d1rect1y from the d1agonal elemerits of

bu +b33 = lt2cosp, (1;)

- T DR .-....‘._--,..._.__..._.

the transformation matrix. Carrying out the operations of Equation (10) nges -

2

1 .2 sinz-% sin“ a 2(sin2-g—' cosacos B 2(cos acosy sinz-%
PN B N e 3 < 2
T - -sin % cos -% cos y) -sin-%-cos }ZL cos B)
Z(Sinz-% cos a cos P 1-2 sinz-}éi sinzﬁ Z(sin‘Z E‘cos B cos vy
-sin-g- co_s-%'— cos Y) : -sin-}zicos—g— cos a) (12)

R o o —«..- ' . -~

' %{ ‘Z‘(Ecls’_a cos Y s1n2f& 2(sm ‘Z cos Bcosy 1-2 sin %smz Y

+- sm%cos Q08 ﬂ) ,_-Gin‘g cos-g:;:o;ef oo ‘1 ’ ”'“"'“‘“““ ]

If the followmg subst:tutmns are made.‘

.§~ _ cé# a sm% = cos B sm%, = cos y sm-g-, x = cos%, M (13)

PR
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the matrix of 112} becomos

™ 2 2 .

£ o™ 23" x 2(gn + 1 x) 2(€5 - nx)

B}t 2(gn-3x) -§&+n"‘-cz+x"' 2(nL + £ x) . (14)

A8 +nx) - 2Ani -€x LI S

These four quantities are called the Euler parameters. It may be seen from

their definitions that they obey the relationship

§Z+qz+;z+x2=1, (15)

so they are not all independent. Also, none may lie outside the range %1,

If the quantities u, a, B, and y are known, it is a simple matter to compute
the Euler parameters and/or the transformation matrix by the method given above.
If, on the other hand, the transformation matrix is given, it is-also possible to
solve for the four parometers, though difficulties arise. A considoration of these
difficulties will shed further light on the nature of the Euler parameters. To begin
with, it should be stated that the quantities g, a, f, and y cannot be uniquely
determined from the transformation matrix. The reason for this is that even thougis
rotation through a certain angle, about a certain axis will produce a definite unam-
biguous orientation, the reverse is not true. If the orientation is given, there are
four separate ways in which it could have been obtained by rotation about a fixed
axis. Possibly an example will help to clarify this, Assume that the rotation being
considered is a rotation through an angle of + 30° about the + X axis, There are

three other ways to get to the same position: (1) a rotation through - 30° about the

- X axis; (2) a rotation through - 330° a'boutﬂthe + X axis; (3) a rotation through

o . : . .
+ 330" about the - X axis. A further illustration of the possibilities is given in
the table following,

X € n 14
Case 1 + coa-s— +cos a sind- +cos P :in% +cos y sin%

Case 2 +cost (- cos a)(- sin ) . .

2 i (- cos B)(- sin %) (- cos y)(.- sin%)
Case 3 - cos 5— +cosaf- .un%) +cos B (- sin%) +cos y{- sin ‘Z")
Case 4 - cos 5— (- cos a) nns- (- cos ) sin%’ (- cos y) glin %

The first two cases lead to the same Euler parameters, and the last two lead to
a different set which are the negative of the first, All four sets lead to the same
transformation matrix. ; )
WADC TR 58-17 8
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The relationship between Euler parameters and direction cusines may
B be derived by equating terms i Equation ‘14). The result is
2 .

1y = ;+a“+azz +a33,

48" = 1+ apy - A, - A3z (16)
2

Ant o= deay) tay, -z

4 Z 1 +a

o= -2y -3, tags.

These equations determine ihe Euler parameters except for sign, The sign must
be gotten in ancther way. From comparison of terms in the matrix it is possible

to show :hat
4xm,
1%L, (17)

fu
w
Ld
'

o
2

it

A
—r
o

]

s
[\ Y]
Lo

n

2,3 - a3 = 4x6.
Thus, if x is assumed to be always positive, the signs of the cthers may be
deduced from Equations (17) unless yx = 0. This is the special case of a 180°

rotation, There is an additional winibiyuily il e Lecause the direciion of ithe

e

xis of rotation and the direction of the rotition are cenpletely unrelated,

Either a positive or a negative rotation abcut either the positive or negative

r

:xis will give the same result. For this special case, another means would
have to be devised for defining the signs, but it hardly scems worthwhile to go

into it here. It is nct expected that this will lead to auny practical difficulties.

¢
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SECTION 1l
THE CAYLEY-KLEIN PARAMETERS

-

In this development of the four-parameter system, it is found that a

2x2 ¢onnlex initrix may be used to represent a real rotation, rather than a

2x3 real matrix, Consider such a matrix (H),

(H) = . (18)

ba1
The requircinent is placed on this matrix that it be unitary, that is tc say the

preduct of (1) and its adjoint must yield the unit matrix, The adjoint is the

complex conjugate of the transposed matrix, In addition, it is required that

the determinant of the mairix (I} huve the value +1. The unitary condition

allows %1 for the determinant, so this is an additional requirement.

The
unitary condition may be wrilten as
lh % n, h, b 10
117 P21 11 12 | k (19)
1 * !
Nt by b P2 ° 1
Fupending and equating components gives
. . )
by *hyy oy *hyp =L
o K % -
hyy "Ryt hgy thyp =0
tcv)
big *hyy * by *hyy =0,
* * =
Mz My T My TRy, =

The scceond and third equations arc the same, being merely complex conjugates

of cach other, The first and fourth equations have no-imaginary component,

whereas the second (or third) has both real and imaginary parts, Therefore, the

three independent equations contain four conditions,

h - 4 : it 51 ot ine cc 3
1 ]hzz - hal ) -~ = 1 m 'lke 1 pOS‘alblc to d(’..t(,l'l?]lnq.. certain
I'CIJ:&OHSHI‘I})S an‘;ong t:‘le f()llr ql!d“[it‘le.’: h

These, together with the deter«
minant requirement that h

nane It may be shown that h?.?, = h”*

-y »% 50 the natnix may be written as

and 1121 =

WAL TR 58-17 10
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. \
by By,

(1) = (21)
- * *
\ Pt by
The quantities hi hlZ' h22 are usually referred to as the Cayley-Klein
parameters, It will be noted that they are complex numbers. While it is
convenient to use them as such i~ analytical operations (and this is the
purpose for which Klein develcred them:) a physical computer must treat
complex numbers in terms of their real and imaginary parts. Thercfore,
it is convenient to introduce fou- other quantities defined as follows:
h = a, + ie

‘11 1 2’ X
hy, = e, + ie,, (22)
12 3 4

where the e's are all real numbers, and i is tue square root of -1. Using

these definitions, the matrix (H) may be writtea as

(H) = {23)

ey +ie2 €3 + '1e4 )
~eg +ie4 e, - ie, J

Now consider another complex matrix (P), which has the form

. z x - iy
(P) = ) , (24)

x + iy -z /

where x, y and z are real numbers, It will be noted that the matrix (¥) is ‘
equal to its own udjoint, and thus is said to be self-adjoint or Hermitian, Now

consider a transformation of (P} of the form

(P) = (m){p))t (25)

wnere (H)+ designates the adjoint of (H). Siuce (H) is unitary, (H)‘!. ="(H)"1,
so equation (25) is

(P) = )Pyt . (26)

This i a similarity transformation, Itis shown in Apperdix A that the deter-
minant of 2 matrix is invariant uader a similarily transformation, It can also

be shown that the Hermitian property and the spur are both invariant undeyx a
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similarity transformation, Therefore, the transformed matiix (P)' must

A have the Torm
o' x' -~ iy’
(P)' = bl (27)
’ x' +iy' A ‘
The ficr that the determinant ¢f () must equai the determinant of {)' gives
5 ;
x?' + yz +z° = x‘z + y‘z' + z'd. (28)
If x, y and s are viewed as components of a vector, then Equation (28) is the
requirement that the length of the vector remain unchraged. Izuation (26) may
be written
Z' 5 Pt . ‘l ” - i ! . i s \ e _i
x'-iy') ey tie, e3ile‘*\ (7 =iy (el ie, -eg-ie (29)
I BT | ol I A9 v - -1V - Z =1 ia °
o Ay % eytie, e) - .- \xh.y Z2j | Ey-iey Ll+1€‘z
If the operations of Eqguatica (29) ae carried out, it is {ound that
x‘:(nz-eznez'-bcz)x-z-'ee + eqe, )y * 2{e,e, - e, e)2
"1 2 3 4 A ) 374 274 1¥3/% ¢
o . ;o2 L Z 2 b e a At
y'm2legey s eqepx e T eyt G egT - e )y + 2epey teye)z (30)
. . 2 2 2 2,
S B 3 . 4 & - S - - - 3
2zt o= L.(cle.3 ¥ eae4)>. t2(e,eq g,ie.“})y + ((,.1 Fe, ¢g e, iz .
These eguations represent a linear transformation between the components of x, y
and z, and the components of x' y' and z'. The matrig for this transformation
1s
2 2 2, 2 5 \ :
€1 "% "% "% Zeyeptezey) 22,0 -0y e3)
2 2 2 2 ‘2
A - > o - e - 2 > - H
{AY = “(6304'(5182 ) 2 e, tegt ey (Pzej-r_e4cl} . 31
= 2.2 2 2
'Z(clcji-e&ezé) Z{e,e —eled) e tey -ey mey
It miay Le shown directly that this matrix satisfies tne orthogonality conditions,
but it is proved 2luw from Equation (28}, Eyuation {31) shows that the nine
dircction cosines may be expressed in tevms of the four e's. If Equations {22)
WANT TR §8.17 12
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ATe substiuted ntoe Eguatons {20) it 1s found that

2 2 .
€ Yo, +'32'&°‘Z x 1, (32

and therefore, only three ot the o's are {adupendent. The identity of thesc
four gquan.itics with the Euler parameters ir obvious, Comparicon of Equations
(31} and (14) gives

el F Xe ez = & “.3 = N . Q‘ = g. . (33)

An equivaience has been indicated betwaen the real (3x3) matrix (A) and the
complex (2x2) matzix (H). It raey be shown that this correspondence goos
further, Consider the real transfoxmaticn '

e X = (B)F, _ o (34)

ard iet the asscciated unitary complex matrix be lH)l. 80 that
(PY = (M) (RXH)] . (3%)
Nov cunsider a second tranaformation (A) with associated (H),.
o= (A,
(P)* = (H),(P)(R); , (36)

Subatituting (34) and (35) into (36) gives

i.xl = (Crf,
(P} = (),(H), (PHR)(R) . (37)

Thevefore, if (A} B) =.(C) and (“)Z(H}! = (H)3, ‘the above equations become

' = {C)TE,

(B)" = {H)(P)H)] , ' (38)

showing that

that multiplication of twe real 3x3 :Jatrices corrosponds to maltiplication
of the twu associated 2x2 complex matricus in the aame order. Two types of quan-

titioe which correspond in this manner are ¥aid to be isvmorphic,

»
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It 15 2180 possible to view thie procers of 1wo ¢uccessive rotations in tetms
of tiie e'w themsclvea, Conaider one rotation dofined by ULPT €q and €4
After this, another rotation is periormed whiclk in deucribag by el'. el’, e3'
and 64', Thers i¢ some get 6f e¢'s called el", '2”' erj“. cé" which dascribee
the final omentatior after the two rotaticas. This combined mal sany be found by
multiplying ithe (H) matrices of the two rotattpas in the corcoct ssquence, The

equation is
{el"ﬁez“ ef‘ﬁo;' ql'ﬁ-z“ 03'4104 elﬂez u3ﬂu1
(1) = . : . (39)
\:.as"ﬁc‘" ol"-iez" -a,’h’m" cl',-.icz' »eaﬁs‘ ©,~ie

Expanding thiv equation and equuting components gives t .

& mer'e) v o0y - oytey —ayley

" B .
0, we e e ey'e, + °3l“‘l -e ey \
e v o ley -0yl + ay'ep ¢+ ole, (+0)

c4" o °2'°3 + 01'04 + 04'01 o el'ez .

By use of these cquations, successive tranaformations may bo handled in terms of
the e's directly. »

This technigue may be used to determiny the relationship boetween the e¢'s and
the Euler angles given in Arpendix B, The (H) matrix corresponding to each of

the Eulmr angle rotations muy be detor.nined, and the three may bs multiplied in
Consider {irst the

in Aprendix B,

tho correct order to synthesize the complete tranaformation.

]
)
3
2
L
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1
3

13
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o
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{P) matrix corresponding iv the Hrst B
F-om Equation (179) it is seen that the transformation equations are

ESIESS X1 R IR LIV
Yy v-xsiad +ycoay {41)

t' ==z,
Zquating coefficients of these equations with like coofficients in Equations {30)

gives the nine relations
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Carrying out the indicate

2 2 2 2 — .
cos Y = ¢ me, megT e, - sing = 2(030-}"01“&)' 0 = 4(e1c3+c2e4),
sin = Z(ele2~le3e4), cos Y = elz-ezz+c33-e44, n = Z(e&e3-elc!4), (42)
2 2 2 2
0= 2(eze,-ee;), 0 = 2(eyczteye)), 1=c)The, ey e,

These equatiuns cannot all be satisfied unless ey = ey = 0, 1f this is true, then
' 2 2 . Fa 2
cos g =e " e, sin ¢ = Ze,e,, ey ey = 1, (43)

Solving these equations for €y and e, gives

e = cos-%’- . e, = sin%—. (44)
so the (H) matrix corresponding to the ¥ rotation is
¥
cos%’- +3i sin%— 0 e'Z2 0
(H)q’ = = (45)
0 cos—‘,£ -1 smfzp- 0 e'i%
= \

By an exactly similar process, it may be shown that the other two matrices are

Icos‘g' sin%\ Icos%’- i siné,.i \
(1), = N : (46)
~sin-2- cos 5 isin-g— cos %

Therefore, the entire transforimation, which is the result of all three rotations,
is

e +ie2 eq + ie4
(H) = = (), () (), - (47)
\ "ty tity ey -l
“omponents gives
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SECTION 1V
QUATERNIONS

The most brilliant formulation of the four-parameter method was made by
Hamilton in 1843, He developed a new type of ehtity called a '"quaternion". It

is composed of four .parts,

q =S +ia + jb + ke, (49)
where S, a, band ¢ are real numbers, and the indices i, j and k are defined

by the following rules;

i¢ -1, ij = - ji =k,
3% = -1, ik = - kj =i, (50)
K=o, ki = - ik = j.
The conjugate of the q 'aternion q is
g* =S ~ia - jb - ke, (51)
Using the laws for the indices qucted above, it may be easily shown that
qq* = q*q = 5% +a% + v% + - (52)

which is called the length or norm of the quaternion. If this norm is unity, then
a special formm of quaternion results, a verbsor. It is possible to make use of
th2se to describe a coordinate transformation, The quantity S is called the real
or scalar part of the quaternion, and ia * jb + kc is called the imaginary or
vector part, Now assume we have a quaternion whoese scalar part is zero, We

call this a vector of components X, Y and Z,

V = iX + jY + kZ. " (53)
Liet us examine the operation
q¥Vq = V! : ' e (54)

where q 1s a versor, So far there is no particuiar reason to expect that V'

will be = vector, but this turns out to be the case. Egquation {S4) may be written

(S -ia - jb -ke) (iX +jY +kZ) (S +ia +jb +ke) = V', (55) - F

Wler this rquation is expanded making use of the rules for indices, the result is ,

oo -c®] + Y [2cs +2ab] + Z[2ac - 2sb] }
Lxl&aL‘-‘ZCS] + Y[+Sz-az-b2-cz] + Z [2as + 2cb] } (56)

{x[2 o~: )] + Y[2bc - 2sa] +Z[sz-:~12--bZ +'c2] 3 ‘

3 TR 16 . | T o
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This 1s simply a coordinate transformation wlese transformation matrice is

2 2 2 2

s +a% - b" - ¢ 2{cs + ab) 2(ac - sb)

2(ab - ¢s) s2 Sat . cZ 2{as + cb) . (57)

y 2

2{ac + sb) 2(bec - sa) WAt bt et l
The correlations with matrices derived in the two preceding sections are
evidently

e =X =8, ez'z!d-_-c, ey =1 =Db, ey =8 =a, (58)

The matter of two successive rotations may be handled quite easily., Assume
that first we transiorm a vector with the versor q)-
ql*vql =V, (59)
Next we apply the versor q,,
V' = q,*V'q, = q,%q*Vq,q,. (60)

9, = 93: and wish to find the relationship between

We define q, = qz*ql*. It may Vbe seecn that

We now define a new vector g

—

q; and qz*ql*.
qZ*qZ*ql* = Q,49 (61)

ard since q, is a versor, qzqz* = 1. Theretore, Eguation (01) reduces to

ql* =99 (62)
Now we apply q, on the iefx,
UYT T 999 T 17 d39. (63)
50 that Ay inust equal the conjugate of ;- This means that
Y= qs*Vq3 . {64)
Now observe that the equation q3 = q,q, may be written
e » - ’ . . . . q
Sy -iay - jby - key =S +ia +jby +kc1) (SZ +ia, +.Jb2. t ke,). (65)
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Expanding this equation and equating components gives

S3 = 85,5, -3)2, -byb, -cc,,

ay = Slaz + SZal + blc, - CIbZ ,
_ _ (66)
by =8;b, - ayc, + b5, 13,

€3 =51cp t )b, - b3, 6,5,
These equations are identical with Equations (40) which were developed in the
same connection by use of the Cayley-Klein parameters. Thus, the quaternion

method leads to the same result as the preceeding developments,



L]

SECTION V
-
INFINITESMAL TRANSFORMATIONS AND RATE OF ROTATION
The preceding sections have dealt with the four-paramter maothod of
specifying the orivntation of a coovdinate svstem, As was stated in Section
: however, the primary intercst is in determining the orientation {romm the rate
4 of rotation through a process of integration, Accordingly, it is necessary to
rclate the rates of change of the four parameters to the rates of rotaticn of
: the axis system,
1 .
) It was shewn in Section IIT that an orthogonal transformation may be
} . represcnted by a complex matrix having certain propearties. It is now of
: interest to investigate this matrix when an infinitesmal rotation is performed.
! Let us assume that this infinitesmal rotation consists of a rotation through the
angle A about a line which makes angles of a, p and y withthe X, Y and
)
Z axes respectively, Recall that the matrix (H) may be expressed
el+1eZ c:3+1¢534 \
g M) = . (67)
] - e.3 +1e4 Cl --1eZ
% Applying the geometrical interpretation of the e's gives
cosL +1i cos Ys'mi,ll cos B sink +1icos g sink
2 2 2 2
(H) = . ((:3)
- in B+ i in s B oL ; in £
cospsmz-fxcosusmz €OS 5 ~ 1 cos Y sin-y
From this, it is possible 10 see that the infinitesmal rotation mmay be represented
. by
1
R & 1!»1Z cos Y Zcobﬁ+12cosu
H 69)
: ()e -”-cosﬁ+i~g—"cosu 1-19-& cos y /. (
1 Zz 2 2
k-
A
E since cos%‘-‘- ~ 1, sin'% ~ %‘ .
1
' - It is expected that any matrix repre: 2nting an infinitesmal rotation will differ
only slightly from the identity matrix. This is true of the above mairix, and

¢
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“his mayv be shown more clearly by writing it as follows:

1 0 icos Yy cos P +icosa )
{12) +‘—3§- = (1) - (e). (70)

¢ 1 ~-cos P +icosa -i cos vy

Now assume that this infinitesmal rotation takes place during a small time interval
At. If (H) is the matrix at the beginning of the interval, and if (H)' is the matrix

at the end of the interval, then the time derivative of (H) may be written as

. . '
a%_ () = lim (H) - (H) (71)
%

The final matrix (H)' may 21so be viewed as the rcsult of two rotations, first (H)
and then (H)E . In other vords, (H)' = (r!)F (H). Putting this into the above
equation gives

d o limo (e) .

at ) = e - ) (72)

Since (H) is not affected by the time inciuviment, the limiting process refers only

{ .
to the quantity _\_:_3'
() o1 As { icos vy cos B +icosa (13)
At 2 At -cos f +ticosa -icos vy

Iiitne iimit, the quantity %is simply the scalar magnitude of the angular

velocity vector, If P, Q-and R are the components of this velocity vector

. . . du du
zleng the X, Y and Z axes, then evidently 5= cos ¢ = P, == cos vy = R,

Ay dt dt
—— cos $ = Q, so that
iR Q +iP
lim  (e) _ 1 |
e = (74)
At=0 At~ 7T | -Q+iP - iR \74
Thercfore, fromn Equation (72),
d 1 iR Q +iP
at (H) = 3 -0 +ip - iR (H). (75)
itis oo possitT o , a straightforward limiting process,-that the time

also a matrix whose elements are the time derivatives



of the elements of the original matrix, Therefore,

e, +ie, e3+ié4 1< iR Q +iP e, tie, ey +ie,
= . (76)
-3 + ie‘l ey - ieZ -Q +1iP - iR -es + ic4 e, -lie,

Expanding and equating like components gives

Zel =-e4P-e3Q-eZR,
2e, =-e,P+e,Q+e, R

2 3 4 1 (77)
Ze3=+ezP+elQ-e4R,

2e4 = + elp - eZQ + e3R.
These are the equations which would be used to compute the four parameters in

an actual simulation. Now if we multiply Equation (76) on the right by the adjoint
of (H) the result is

e tie, eytie \[e -ie, ey -ie, , iR Q -iP
= - .(78)
ey tie, e -ie, [\ e -ie, e, +ie, -Q -iP  -iR
Again expanding and equating components gives
P=2(-epe) - e3¢, +eye3 +ejey),
Q=2(- e3e.:l + e4¢‘32 + el?3 - eze‘r4), (79)
R=2(- e,e) teje, -esext e3e4).

Thus, if the four parameters and their rates of change are known, the angular

velocity may be computed.
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SECTION Vi
THEORETICAL ERROR ANALYSES

In the preceeding sections, the fundamental theory of the quaternion
method has been presented. Before proceeding to an application of the
method, it is of interest to study theoretically the errors to be expected.

Not only will this give a prediction of the results to be obtained in the ‘
simulation, but it will give a better understanding of just how the equations
must be instrumented in order to achieve the maximum accuracy of which
the computer equipment is capable,

As was mentioned earlier, both quaternion and diraction cosines will be
sirnulated, so errors for both were analyzed on rnuch the same basis, It is
felt that this is an imiportant part of the demonstration, because without a
theoretical error compari on, any differences found in the sirnulation would
be subject to the question o computer malfunction, If simulator results and
theoretical error analyses agrec with each other, the degrece of confidence in
the comparison will be much higher. ‘Theoretical error analysis is but little
used by analog computér operators, especizlly in non-linear problems such as
this, It turns out, however, that both quaiernions and dir«ction cosines lend
themselves readily to an analysis of errors and the results obtained agree with

observations.,

A, Direction Cosine Method

The fundamental equa{ions to be used in generating the direction éosine
transiormation are given in Appendix A, There are, however, many possible
viriations which will be discussed briefly. Possibly the most straightforward
way wculd he to solve the nine simultaneous equations and thus generate all nine
of ‘l1e direction cosines by integration. As the solution progresses, however,

o

17 is inevitable that errors will accumulate. Some of th

P I T -
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such nature as to cause the orthogonality conditions (Equations 130) not to be
satisiied after a time if, indeed, they were satisfied initially. This may be
thought of as a departure of the three axes of the moving system from mutual
orthngonality and distortion of the unit le=<th of these axes. Some of the errors
;rising in the solution will v~ conimbute to this, and these may be thought of as

wyvla: drifs - -¢ the coordinate system will drift as a whole, and



